
CHARACTERISATION OF THE PARENT PHOSPHOLE AND PHOSPHOLYL ANION AND SOME OF THEIR C-SUBSTITUTED DERIVATIVES BY ¹H AND ¹³C NMR SPECTROSCOPY Claude CHARRIER and François MATHEY Laboratoire de Chimie du Phosphore et des Métaux de Transition D C P H - Ecole Polytechnique - 91128 PALAISEAU Cedex (France)

<u>Summary</u>: The parent phosphole and phospholyl anion as well as some C-substituted derivatives have been characterized by ¹H and ¹³C NMR spectroscopy for the first time; the two most noteworthy features are the absence of ${}^{3}J(\underline{H}-\underline{P}-\underline{C}-\underline{H})$ couplings for the phospholes and the huge ${}^{1}J(\underline{C}-\underline{P})$ couplings for the phospholyl anions.

Although they are known for many years now ¹, phospholyl anions such as <u>1</u> have never been characterized by any spectroscopic technique except ³¹P NMR spectroscopy ^{2,3}. This is undoubtedly due to their high reactivity and to the difficulty in obtaining them in the pure state . Indeed, they are generally prepared by cleavage of the P-Ph bond of 1-phenylphospholes by alkali metals ¹ and thus, are accompanied by phenyl by-products . This situation

is obviously unsatisfactory since these anions are both theoretically and practically very interesting ⁴. On the other hand, P-unsubstituted phospholes including the parent species $\underline{2}$ have been unambiguously characterized for the first time only very recently ³. They are obtained by protonation of phospholyl anions at low temperatures and readily rearrange to give 2<u>H</u>-phosphole [4 + 2] dimers via an easy [1,5] sigmatropic shift of hydrogen from phosphorus to carbon ³. As phospholyl anions, they have only been characterized by ³¹P NMR spectroscopy. Very recently, we have devised a technique which allows the preparation of pure phospholyl anions ⁵ and, consequently, of pure P-H phospholes (eq. 1).

M = Li , Na , K

This opportunity prompted us to investigate in depth these species by $^1{\rm H}$ and $^{13}{\rm C}$ NMR spectroscopy . The results of this study are reported in Tables I - IV (δ in ppm + for down-field shifts, ref. Me_4Si or H_3PO_4, J in Hz) .

	NMR data : C-unsubstituted phospholes			Table II -	II - NMR data : 3,4-dimethyl- substituted phospholes		
R	Ph ^a	Li ^b	НC	R	Ph ^a	Li ^b	нc
	(CD ₂ C1 ₂)	(C ₄ H ₈ 0 + C ₄ D ₈ 0)	(C ₄ D ₈ 0 at 183°K)		(CDC1 ₃)	(C ₄ H ₈ 0 + C ₄ D ₈ 0)	(C ₄ D ₈ 0 at 183°K)
δΗ _α	6.94	6.78	7.10	δHα	6.45	6.36	6.53
δH _β	7.00	6.62	7.33	δ(CH2)	2.09	2.11	2.24
² J(H ₂ - P)	38.7	40.76	39.8	$^{2}J(H_{\alpha} - P)$	38.4	39.7	39.8
$^{3}J(H_{\beta} - P)$	14.5	6.42	14.33	⁴ Ј(С <u>Н</u> зР)	3.0	0	2.5
³ J(H _α - H _β)	7.2	5.61	7.05	⁴ J(С <u>H</u> 3H)	0.7	0	-
3 J(H _{$ho - H ho)$}	2.2	2.43	2.3	δCα	129.47	128.68	124.56
$^{4}J(H_{0} - H_{0})$	1.1	1.23	1.04	δC _β	148.63	127.89	152.18
$4_{J}(H_{\alpha} - H_{\alpha})$	2.7	3.56	2.78	δ (<u>CH</u> 3)	17.46	17.42	18.12
δCa	135.78	129.71	131.15	1 J(C _a - P)	4	44	2.4
δ C _β	137.51	119.74	140.68	2 J(C ₀ - P)	7.8	4.7	6.1
¹ J(Č _α - P)	4.5	46.6	6.1	³ J(CH ₃ P)	4	0	3.7
2 J(C_{R}^{α} - P)	8	4.5	6.1	δ ³¹ P	- 2.5	+ 55.8	- 59.4
δ 31p	+ 6.57	+ 77.2	- 49.2				

a) The $^{13}\mathrm{C}$ data of 1-phenylphosphole have already been reported 6

a) The ¹³C data of 1-pheny1-3,4-dimethylphos-phole have been reported elsewhere ⁷
 b) These data have been already reported ⁵

 b) The sodium and potassium derivatives give very similar data

c) $\delta(P\underline{H}) : 5.19 ; {}^{3}J(H_{P}...H_{\alpha}) 0 ; {}^{4}J(H_{P}...H_{\beta}) {}^{c)}\delta(P\underline{H}) : 4.92 ; {}^{3}J(H_{P}...H_{\alpha}) 0 ; {}^{5}J(H_{P}...C\underline{H}_{3})$ 2.3 ; ${}^{1}J(H-P) 233.1 {}^{2.8} ; {}^{1}J(H-P) 215.5 {}^{c)}$

From these data, it is clear that P-unsubstituted phospholes closely resemble P-substituted phospholes as far as 1 H and 13 C NMR spectroscopy are concerned . We have already magnitude and the temperature dependence of the ${}^{1}J(H-P)$ coupling constants discussed the in these species 3 . The only new fact which appears in these Tables concerns the absence of coupling between the protons at phosphorus and at the α -carbons ⁸. This ³J(H-H) coupling constant very likely follows a Karplus-like relationship with the H-C-P-H dihedral angle . Thus, this absence of coupling is almost certainly related to the pyramidality at phosphorus which means that this angle is close to 90°. More differences appear between phospholes and phospholyl anions . The most significant one is undoubtedly the drastic increase of the 1 J(C-P) coupling constant which is observed when comparing a phosphole and the corresponding phospholy] anion . This increase is certainly related to the increase of the C-P bond order due to the strong aromaticity of phospholyl anions 9 . Indeed, the recent work on phosphaalkenes clearly demonstrates that 1 J(C-P) coupling constants increase with the C-P bond order 10 . On the other hand, the β carbons appear to be significantly shifted to high fields in phospholyl anions . It must be recalled here that phospholes more or less behave as vinylphosphines

Table III -	NMR data : 2,5-diphenyl- substituted phospholes			Table IV - NMR data : 2,3,4,5-tetramethyl- substituted phospholes			
R	Ph	Li	на	R	Ph ¹³	Li	н ^а
	(CDC1 ₃)	(C ₄ H ₈ 0 +	(C ₄ D ₈ 0 at		(CDC1 ₃)	(C ₄ H ₈ 0 +	(C ₄ D ₈ 0 at
		^C 4 ^D 8 ^O)	213°K)			C ₄ D ₈ 0)	183°K)
δH _β	-	6.92	-	δ(α C <u>H</u> 3)	1.93	2.18	2.17
³ J(Н - Р)	-	3.7	-	δ(β C <u>H</u> 3)	1.93	1.98	2.03
δC	151.58	149.43	146.9	$^{3}J(\alpha CH_{3}P)$	10.0	10.2	10.7
$\delta C_{\beta}^{\alpha} - P)$	131.98	118.53	128.28	⁴ J(вС <u>Н</u> 3Р)	3.6	0	2
¹ J(Č - P)	0	33.8	0	δCα	135.1	134.49	129.89
-J(C _o - P)	8.5	0	5	δΟβ	142.89	124.84	145.58
δ ³¹ P	+ 0.32	+ 78.75	- 54.16	δ (α <u>C</u> H ₃)	12.7	16.27	13.87
				δ (β <u>C</u> H ₃)	13.85	14.08	14.24
				$^{1}J(C_{\alpha} - P)$	0	39.7	0
				$^{2}J(C_{o} - P)$	11	0	9.8
				² J(αCH ₂ P)	22.2	29.2	22.0
				J(βCH2P)	2.0	0	2.0
				δ 31 _P 3	+ 12.71	+ 63.02	- 37.0
^{α)} _{δ(PH)} : 5.50 ; ⁴ J(H _p H _β) 2.5 ; ¹ J(H-P) 227				a) δ(P <u>H</u>) : 4.81 ; ⁵ J(H _p βC <u>H</u> ₃) 2.4 ; ¹ J(H-P) 207.3			

in some cases ¹¹. This means that the double bonds of phospholes are polarized as follows : ^{+δ} $C_{\beta} \xrightarrow{\dots} C_{\alpha}$ ^{-δ} - P. The aromaticity of phospholyl anions destroys this polarization . Moreover, the coefficients of the π_p HOMO are higher at C_{β} than at C_{α} according to theoretical calculations ^{9b}. Hence, this shielding may be another consequence of the aromaticity of these anions .

Experimental data

The 3,4-dimethylphospholyl anion is synthesized according to eq. 1. The synthesis is more precisely described in ref. 5. The parent phospholyl anion is made in the same way. The starting 1,2-bis(phospholyl)ethane has the following characteristics : $\delta^{31}P + 9.96$ in CD_2Cl_2 ; $\delta H_{\alpha} 6.76$, $\delta H_{\beta} 7.03$, $\delta C\underline{H}_2 1.76$; $^2J(H_{\alpha} - P) 37.1$, $^3J(H_{\beta} - P) 15.3$, $^3J(H_{\alpha} - H_{\beta}) 7.2$, $^4J(H_{\alpha} - H_{\beta'}) 1.1$, $^4J(H_{\alpha} - H_{\alpha'}) 2.8$, $^3J(H_{\beta} - H_{\beta'}) 2.3$; $\delta C_{\alpha} 133.87$, $\delta C_{\beta} 137.90$, $\delta \underline{CH}_2 20.0$, $^1J(C_{\alpha} - P) 7.3$, $^2J(C_{\beta} - P) 7.7$.

Anal. Calcd for $C_{10}H_{12}P_2$: C, 61.86; H, 6.18. Found : C, 62.10; H, 6.08. The 2,5-diphenylphospholyl anion is obtained via the cleavage of the P-P bond of bis(2,5-diphenylphospholyl)¹². The 2,3,4,5-tetramethylphospholyl anion is made via the cleavage of 1,4-bis(2,3,4,5-tetramethylphospholyl)butane obtained from 1-phenyl-2,3,4,5-tetramethylphosphole¹³ by following the technique depicted in ref. 5. All the cleavage reactions are run in THF or THF d₈ at room temperature. The protonation of the anions is carried out by CF₃CO₂H (1.5-1.8 eq.) at 183°K, the concentration of the solution is about 0.1 M.

Acknowledgement

The authors are grateful to Dr F. NIEF for providing 1,4-bis(2,3,4,5-tetramethyl phospholyl)butane .

References and Notes

- 1. E. H. Braye, I. Caplier and R. Saussez, Tetrahedron, 27, 5523 (1971)
- 2 . L. D. Quin and W. L. Orton, J. Chem. Soc. Chem. Commun., 401 (1979)
- 3. C. Charrier, H. Bonnard, G. de Lauzon and F. Mathey, J. Am. Chem. Soc., 105, 6871 (1983)
- 4 Phosphinines and phospholyl anions are the only known aromatic phosphorus heterocycles which are easily accessible. Besides, phospholyl anions are strictly isoelectronic with thiophenes.
- 5. C. Charrier, N. Maigrot and F. Mathey, Organometallics, 6, 586 (1987)
- 6. T. Bundgaard and H. J. Jakobsen, Tetrahedron Letters, 3353 (1972)
- 7. G. A. Gray and J. H. Nelson, Org. Magn. Reson., 14, 14 (1980)
- 8 . On the contrary, a ³J(<u>H</u>-N-C-<u>H</u>) coupling of 2.58 Hz is observed in pyrrole : A. R. Katritzky, Handbook of Heterocyclic Chemistry, Pergamon, Oxford, 1985, p. 59.
- 9 . Theoretical calculations predict a strong aromaticity for phospholyl anions, see :
 - a) G. Kaufmann and F. Mathey, Phosphorus, <u>4</u>, 231 (1974)
 - b) N. M. Kostic and R. F. Fenske, Organometallics, 2, 1008 (1983)
- 10 . Huge (<u>ca</u> 40 to 50 Hz) coupling constants are observed in phosphaalkenes, see : Th. C. Klebach, R. Lourens and F. Bickelhaupt, J. Am. Chem. Soc., <u>100</u>, 4886 (1978)
- 11 . Nucleophilic attacks by alkyllithiums are observed at the dienic system of phospholes (see for example, ref. 5) . Vinylphosphines similarly react with alkyllithiums at the C=C double bond : D. J. Peterson, J. Org. Chem., 31, 950 (1966)
- 12 . C. Charrier, H. Bonnard, F. Mathey and D. Neibecker, J. Organometal. Chem., <u>231</u>, 361 (1982)
- 13 . F. Nief, to be published .

(Received in France 25 July 1987)